Two-Dimensional Materials Based Optoelectronics
نویسندگان
چکیده
منابع مشابه
Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures
Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDCs) and black phosphorous have drawn tremendous attention as an emerging optical material due to their unique and remarkable optical properties. In addition, the ability to create the atomically-controlled van der Waals (vdW) heterostructures enables realizing novel optoelectronic devices that are distinct from con...
متن کاملPhotonic Structure-Integrated Two-Dimensional Material Optoelectronics
The rapid development and unique properties of two-dimensional (2D) materials, such as graphene, phosphorene and transition metal dichalcogenides enable them to become intriguing candidates for future optoelectronic applications. To maximize the potential of 2D material-based optoelectronics, various photonic structures are integrated to form photonic structure/2D material hybrid systems so tha...
متن کاملElectronics and optoelectronics of two-dimensional transition metal dichalcogenides.
The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decade...
متن کاملDense Two-dimensional Integration of Optoelectronics and Electronics for Interconnections
Optics has many features, beyond those already exploited in long-distance fiber communications, that make it interesting for interconnections at short distance, including dense optical interconnections directly to silicon integrated circuit chips. Hybrid technologies, such as solder-bump bonding, have recently been successfully used to attach two-dimensional arrays of optical detectors, emitter...
متن کاملTo appear in “Noncrystalline materials for Optoelectronics”,
In this paper, we review some recent work on amorphous materials using current “first principles” electronic structure/molecular dynamics techniques. The main theme of the paper is to emphasize new directions in the use of such ab initio methods. Some of these, being quite new, need development, but we believe have promise for solving new and important kinds of problems in the physics of glassy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Condensed Matter Physics
سال: 2017
ISSN: 1687-8108,1687-8124
DOI: 10.1155/2017/5789823